Eratosthenes sieve - significado y definición. Qué es Eratosthenes sieve
Diclib.com
Diccionario ChatGPT
Ingrese una palabra o frase en cualquier idioma 👆
Idioma:

Traducción y análisis de palabras por inteligencia artificial ChatGPT

En esta página puede obtener un análisis detallado de una palabra o frase, producido utilizando la mejor tecnología de inteligencia artificial hasta la fecha:

  • cómo se usa la palabra
  • frecuencia de uso
  • se utiliza con más frecuencia en el habla oral o escrita
  • opciones de traducción
  • ejemplos de uso (varias frases con traducción)
  • etimología

Qué (quién) es Eratosthenes sieve - definición

ANCIENT ALGORITHM FOR GENERATING PRIME NUMBERS
Eratosthenes' Sieve; Eratosthenes Sieve; Sieve of eratosthenes; Sieve of Erastothenes; Net of Eratosthenes; Sieve of Erastosthenes; Κόσκινον Ἐρατοσθένους; Eratosthenes sieve; Euler's sieve; Sieve of Euler; The Sieve of Eratosthenes
  • Sieve of Eratosthenes: algorithm steps for primes below 121 (including optimization of starting from prime's square).

Sieve of Eratosthenes         
In mathematics, the sieve of Eratosthenes is an ancient algorithm for finding all prime numbers up to any given limit.
Legendre sieve         
Legendre identity; Legendre–Eratosthenes sieve; Legendre-Eratosthenes sieve
In mathematics, the Legendre sieve, named after Adrien-Marie Legendre, is the simplest method in modern sieve theory. It applies the concept of the Sieve of Eratosthenes to find upper or lower bounds on the number of primes within a given set of integers.
Turán sieve         
  • Pál Turán
Turan sieve
In number theory, the Turán sieve is a technique for estimating the size of "sifted sets" of positive integers which satisfy a set of conditions which are expressed by congruences. It was developed by Pál Turán in 1934.

Wikipedia

Sieve of Eratosthenes

In mathematics, the sieve of Eratosthenes is an ancient algorithm for finding all prime numbers up to any given limit.

It does so by iteratively marking as composite (i.e., not prime) the multiples of each prime, starting with the first prime number, 2. The multiples of a given prime are generated as a sequence of numbers starting from that prime, with constant difference between them that is equal to that prime. This is the sieve's key distinction from using trial division to sequentially test each candidate number for divisibility by each prime. Once all the multiples of each discovered prime have been marked as composites, the remaining unmarked numbers are primes.

The earliest known reference to the sieve (Ancient Greek: κόσκινον Ἐρατοσθένους, kóskinon Eratosthénous) is in Nicomachus of Gerasa's Introduction to Arithmetic, an early 2nd cent. CE book which attributes it to Eratosthenes of Cyrene, a 3rd cent. BCE Greek mathematician, though describing the sieving by odd numbers instead of by primes.

One of a number of prime number sieves, it is one of the most efficient ways to find all of the smaller primes. It may be used to find primes in arithmetic progressions.